4 KEYS TO A BETTER HYBRID

HOW TO LAY THE GROUNDWORK FOR A BLENDED LEARNING PROGRAM THAT IMPROVES STUDENT PERFORMANCE p. 18

6 | MY LIFE AS A MOOC DROPOUT
Lost in a class of thousands, a MOOC enrollee yearns for a sense of community and shared learning.

8 | DIGITAL BADGES FOR TODAY’S STUDENTS
As changing learner demographics make it harder to earn a four-year degree, educators are experimenting with smaller credentialing steps.

13 | ENHANCING COURSEWORK WITH SOCIAL TOOLS
Social media offer a way for students to collaborate in a familiar environment, whether in a public forum, private network, or somewhere in between.

22 | THE RIGHT BLEND FOR LEARNING
For hybrid courses, tuning the blend of online and face-to-face instruction can be achieved only through experimentation.

DEPARTMENTS

2 | LOGIN Taking the Measure of MOOCs

3 | C-LEVEL VIEW Forging Partnerships With Admin.

4 | CAMPUS & INDUSTRY

26 | PRODUCT ROUNDUP

27 | ABOUT US/INDEX
Taking the Measure of MOOCs

Universities are experimenting with MOOCs for all the right reasons, but no one knows if the traditional business model of higher education will survive.

At the eduCause 2012 conference in Denver, massive open online courses were the talk of the town. Much of the interest stemmed from curiosity, but a lot can also be attributed to uncertainty. Educators simply don’t know what this phenomenon means for their institutions.

Interestingly, this uncertainty was not confined to educators learning about this trend secondhand. Even some of the schools involved with MOOCs admit that the road ahead is poorly lit. Brian Voss, CIO of the University of Maryland, explained his school’s partnership with Coursera this way: it’s better to be part of a grand experiment like this than be on the outside looking in.

Maryland’s motives are probably shared by many of the other 33 colleges that have signed up. The ability to bring top-tier education to anyone with an internet connection is definitely cause for real excitement. At the same time, schools would be foolish not to worry about the threat that MOOCs pose to their traditional business model.

According to many pundits, the existential threat of MOOCs—and online learning in general—is to mid-tier schools that don’t have the brand cachet of Harvard or MIT. I’m not sure this is true: I think elite schools could also feel the effect.

In “Show Me Your Badge,” on page 8, we examine the potential of other forms of credentialing besides full-blown degrees. At the moment, no major institution is willing to issue credits for its MOOCs. But does this even matter? If MOOCs bearing the names of Brown, Stanford, and Penn are truly comparable to their face-to-face equivalents, they still have tremendous value. Someone outside these schools could easily establish a framework for accreditation. Daphne Koller, one of Coursera’s founders, raised the possibility that MOOCs might be treated much like AP courses, giving students a chance to gain credits before going to college. But she might be selling their potential short.

Why do we assume that employers are wedded to degrees? Would a business rather have a self-motivated prospect who walks in with a slew of job-related badges and online courses from Stanford and Princeton, or a traditional student who was spoon-fed his degree?

Elite schools do have one card up their sleeve, though. As Wolfsheim says in The Great Gatsby, “I understand you’re looking for a business connection.” These schools bring together smart students who form networks that last for life. In many cases, their parents and other alumni already stand at the apex of their fields and can ease graduates’ entry into the workplace. It may be heresy to say it, but these networks are as valuable as anything students learn in class. To replicate these networks online will be tough, but if MOOC creators figure it out, watch out.
Forging Partnerships

IT and administrative departments should structure collaboration around specific implementations. By Mary Grush

There’s a trend in higher ed toward encouraging partnerships between administrative departments and IT, but examples of how to build effective partnerships are still all too few. CT spoke with Becky Vasquez, chief technology officer at Embry-Riddle Aeronautical University Worldwide Campus, about insights she gained from directing her IT organization’s collaboration with the campus’s enrollment-management department.

CAMPUS TECHNOLOGY: How important are IT/administrative partnerships?

BECKY VASQUEZ: During my career, I have witnessed occasions where lack of partnership has contributed to unsuccessful prospect and retention campaigns, derailed IT’s ability to optimize operations, and produced unnecessary tension leading to an us-versus-them mentality between IT and administrative departments. On the other hand, I have also seen successful partnerships that have efficiently implemented systems such as Intelliworx CRM, resulting in record-breaking applications and admissions numbers.

CT: Are there typically many IT/administrative partnerships on campuses?

VASQUEZ: Unfortunately, the perception is there are not. During a presentation I did last spring with our assistant vice president of enrollment management and marketing, we polled our audience to discern whether or not enrollment-management and technology professionals believed these partnerships existed on their campuses. Our findings were as expected: Only 23 percent responded “Yes.” Forty-two percent responded “Sometimes,” and 35 percent responded “No.”

CT: How can you inspire successful partnerships?

VASQUEZ: We have built successful IT/admin partnerships by instilling transparency and structuring collaborations into our IT implementation game plan—before, during, and after the actual implementation process. CT

3 Phases of Successful Collaboration

By Becky Vasquez

Pre-implementation. Identify key stakeholders and coordinate a kickoff meeting to ensure everyone is on the same page. During this meeting, stakeholders should share their visions and plan accordingly. This includes determining how teams will communicate throughout the implementation process.

Implementation. Democratize the conversation by holding regularly scheduled follow-up meetings that provide routine status updates. Use the meetings for acknowledging success, offering critiques, and presenting new ideas. Critical components of the implementation should be documented to provide a clear picture of what the project involves. Celebrate success together—not just after launch but throughout the entire process.

Post-implementation. Report to all parties involved on critical metrics and share your implementation story with other departments across campus. Highlighting successful partnerships will inform future decisions and encourage other divisions to partner.
IT’S NOT TOO LATE TO WIN AN IPAD.

What IT issue is not receiving the coverage it deserves? We’re looking for the next big story in higher ed IT. E-mail your compelling story idea to editors@campustechnology.com by Dec. 15, using the subject line “iPad Please.” The best submission will win a free iPad 2, courtesy of Adobe.

MANAGING MOBILE GROWTH. Ohio University is deploying a new 802.11n wireless local area network (LAN) to accommodate the explosion of mobile devices accessing the network. The new Aruba wireless LAN will include 4,500 Aruba AP-105, AP-124, and AP-135 access points and 16 Aruba M3 controllers, as well as Aruba’s AirWave management system for monitoring, reporting, and network control. Read the full story online.

E-TEXT PILOT. This spring, Internet2 and Educause will launch a new electronic content pilot project for higher education. According to the two organizations, the main goals of the pilot are to “advance the higher education community’s understanding of online materials,” in order to meet or exceed the educational outcomes associated with traditional textbooks, and to “explore innovative business models, terms, and conditions” that make digital educational materials effective and economical for both institutions and publishers. Participating educational institutions will select package options from content providers CourseSmart, Elsevier Science and Technology, and McGraw-Hill Education. Read the full story online.

STREAMLINED DATA CENTER. The University of Minnesota has improved the efficiency of its database administration by reducing database instances by about 90 percent. The university deployed two Oracle Exadata Database Machine half racks, which enabled it to consolidate more than 200 database instances to fewer than 20, reduce the amount of space required in its data center, and cut costs. Read the full story online.

OPEN SOURCE UNION. The memberships of open source software organizations Sakai and Jasig have voted to proceed with a long-considered merger early next year. The combined communities will be known as Apereo (the name is a combination of the Latin “aperto,” meaning open, and “mero,” merit). Apereo’s major project areas will include the Sakai
Collaboration and Learning Environment, uPortal, CAS single sign-on, Bedework Calendaring, Sakai’s Open Academic Environment, and others. Read the full story online.

AN LMS FOR MOOCs. Jumping on the Massive Open Online Course (MOOC) trend, Instructure has launched a new platform that allows users of the company’s Canvas learning management system to create online courses, both open and private. Free to Canvas users, Canvas Network includes an option for public open enrollment, support for e-portfolios, mobile access, analytics, collaboration tools, and more. Read the full story online.

MOBILE DEVICES TO SURPASS PCS. By 2015, more end users will access the internet through a mobile device than a PC, according to a new report from the International Data Corporation. IDC predicts that the number of users accessing the web from PCs will shrink from 240 million today to 225 million in 2016. Over the same four-year period, the organization predicts mobile access to rise from 174 million to 265 million. Read the full story online.

THE SMARTPEN IS MIGHTIER… Several colleges and universities are participating in a pilot program sponsored by Livescribe to test the use of Sky, a new WiFi smartpen introduced by the company in October. The pen digitizes whatever a user writes and hears and automatically uploads it to a personal Evernote account. From there, the user can search, play back, organize, and share notes. The results of the pilot will help determine how the pen will be marketed, how users will be trained, and what additional services may be offered. Sky will officially be launched in the education market in early 2013. Read the full story online.

COMING NEXT MONTH. Don’t miss the 2013 Campus Technology Innovators call for entries, beginning Jan. 1. For more information, go to the Innovators website.

Webinars on Demand
Register for the latest Campus Technology webinars online.

Grand Canyon University: How We Are Improving Student Outcomes Using Loud-Analytics on the LoudCloud Ecosystem
Using advanced analytics to profile learners, tailor instructional strategies, and improve learner outcomes. Sponsored by LoudCloud

Herzing University and City College Explore Next-Generation Portal
Learn how two institutions are expanding their capability for content management, document sharing, publishing, and branding. Sponsored by Campus Management

Managing the Project Portfolio at Kent State University
Project-portfolio management can help universities navigate today’s environment of tight budgets, constrained resources, and rapid change. Sponsored by TeamDynamix

Upcoming Events
Jan. 23-26
Association of American Colleges and Universities
AAC&U Annual Meeting
Atlanta

Feb. 4-6
University of South Florida
Higher Education Enterprise Mobile App Conference
Tampa, FL

Feb. 17-20
Instructional Technology Council
eLearning 2013
San Antonio

Feb. 17-22
The Data Warehousing Institute
World Conference 2013: Data Strategy for Your Enterprise
Las Vegas

Mar. 10-13
League for Innovation in the Community College
Innovations 2013
Dallas

To submit your event, e-mail editors@1105media.com.
Confessions of a MOOC-her

Lost in a class of thousands, a MOOC enrollee yearns for a sense of community and shared learning.

I’M HARDLY A TRADITIONAL college student, but I find myself taking university-level classes more and more these days—thanks to the growing number of MOOCs on offer. Plenty of ink has been spilled about how these free online courses will disrupt higher education by providing access to the best professors and classes in the world to anyone with web access.

As so often happens with ed tech, there’s a gulf between the hype and the reality. While these MOOCs can tout huge enrollment numbers—some 160,000 for the Stanford Artificial Intelligence course that jump-started this recent trend—they don’t have high completion rates. Just 21 percent of enrollees actually completed that AI class, and only 14 percent passed.

People fail to complete these courses for lots of reasons, but it’s important to highlight one in particular: What makes these courses so easy to sign up for makes them just as easy to drop. MOOCs have no barriers to entry—no fees, no prerequisites, no textbooks. If you bail out, there’s no record on your transcript or financial aid to pay back. You come, you go.

I should know, because I’m beginning to feel like a serial MOOC dropout. I was one of the hundreds of thousands who signed up for the Stanford MOOCs when they launched last fall. I registered for both Machine Learning and Artificial Intelligence. The former was taught by Andrew Ng, who has since launched Coursera. The latter was taught by Sebastian Thrun, who went on to start Udacity. But one look at the introductory assignments—Machine Learning’s first lesson had the word “regression” in the title—told me that I was in way over my head. (It’s been almost 20 years since I took Introduction to Statistics.) I never went back to the website for either class.

I was more hopeful about my chances in Udacity’s Introduction to Computer Science (CS 101) course, which I figured would be much closer to my skill level. I’ve been learning how to program for about a year, but I’ve struggled with a number of online tools. It was high time for me to take a class instead.

I did fairly well for the first few weeks, dutifully watching the lecture videos and completing the homework assignments. I rather liked the design of the class: Each week’s materials included 20 to 40 short videos (two to five minutes each), followed by short quizzes that didn’t count toward the grade but checked to see if you understood the concepts.

As a computer science novice, I confess there were lots of times when I didn’t grasp the concepts. Turning to the course’s forums for peer support, I was frustrated to find that many of my fellow “students” were boasting that they were actually professional Python developers. (A recent survey of students...
in MITx’s Circuits and Electronics 6.002x course found that 80 percent of respondents had taken a comparable course before. And a survey of students in Ng’s Machine Learning course found that 41 percent already worked in the field.

The forums for my course weren’t filled with warm-and-fuzzy “We’re all in this together” camaraderie. “I can code that homework assignment in one line!” was more typical of the kind of posts that appeared. I should have responded, “Help! I can’t figure it out,” but the bravado in the discussion forums was off-putting. I stayed quiet. I dropped out.

The Motivation Factor

I was absolutely determined to complete my next MOOC, Coursera’s version of CS 101. Frankly, it was only my bloody-minded determination that made the difference between my dropping out of Udacity’s version and sticking with Coursera’s equivalent. Both platforms utilize video lectures, although Udacity’s tend to be shorter—Coursera’s run as long as 20 minutes. They both set short quizzes and homework assignments that are graded by robo-graders. I found these automated grading systems incredibly frustrating, since they’d mark questions wrong that I knew were right (my coding may not have been elegant, but the program ran okay).

The discussion forums for both platforms were similarly overwhelming. I mostly steered clear of them while taking Coursera’s CS 101. In a class of tens of thousands, I felt very much alone. Nonetheless, I completed the course—the only MOOC I’ve ever finished. It was really a matter of my motivation to finally see a MOOC through to its end.

What does this all mean for MOOCs as a delivery vehicle for education? Frankly, I’m not sure if that level of motivation is scalable. I don’t mean just for me. I mean for all the students who sign up with hopes of success only to fall by the wayside. Do these large online classes engage and support and encourage learners? Or will only the most motivated thrive?

And what’s at the heart of such motivation? Job skills? The hope for certification (if not accreditation)? In my case, none of the above. What keeps me most motivated—other than sheer will—is learning with and from others. I enjoy being part of a community in a classroom, and these new MOOC platforms are really struggling to create that sense of community.

Coursera’s use of peer assessment is particularly problematic. An alternative to robo-graders, peer assessment turns over the evaluation of assignments to other students in the class. It was used in two classes I dropped (Internet History, Technology, and Security and Fantasy and Science Fiction), but the system was plagued with problems: Many students weren’t native English speakers, many didn’t understand what good essays entail, and there was no way to rate the feedback. With MOOCs, we’ve scaled the capacity for class size but we haven’t scaled our social learning relationships.

To do so isn’t impossible. Indeed, we need only hark back to the origins of MOOCs and the theory of connectivism from which they sprang. We can build out massive online learning networks; we can learn with and from each other.

I’m experiencing this now in another MOOC. The class, Ed Startup 101, is taught by David Wiley, associate professor of instructional psychology and technology at Brigham Young University (Ut) and an open online course pioneer.

Ed Startup 101 has no video lectures, no multiple-choice quizzes, no robo-graders—and no closed LMS. Instead, students are asked for questions to help guide discussions with guest speakers. We blog on our own sites, where entries are then tagged and aggregated via RSS into the main course website and class blog. The emphasis isn’t solely on the content. The emphasis is on the community of learners.

Audrey Watters is a freelance writer who covers the intersection of teaching, learning, and technology.
As changing student demographics make it harder for today’s learners to earn a four-year degree, educators are experimenting with smaller credentialing steps, such as digital badges. By Audrey Watters

“WHAT REALLY BREAKS your heart are the millions of striving students from low-income backgrounds who are experiencing significant failures in higher education.” That’s how Mark Milliron, chancellor of Western Governors University Texas, describes the human cost behind a damning statistic: Only 56 percent of higher ed students graduate within six years. And those who drop out typically have nothing to show for the experience—except debt. At present, says Milliron, 36 million people in the US have some college but no credential.
In his view, part of the blame lies with higher education's continued emphasis on degrees. As the profile of the typical student shifts from traditional-age kids to working adults—many with families—it’s becoming ever harder for them to persevere through the four years needed to earn a degree. To alleviate the problem, Milliron advocates the creation of a “family of credentials,” ranging from digital badges to certifications, that provide steppingstones for students to advance their education—all the way to advanced degrees in many cases—without forfeiting everything if they need to drop out.

While industry certifications are already highly valued in business, there’s a lot more uncertainty about how digital badges will fit into the larger marketplace of credentials. Will they enhance and/or replace our current degree-focused system? Furthermore, what skills can badges highlight that aren’t already showcased by more traditional résumés or transcripts?

Rewarding Learning Wherever It Occurs

Central to the badges movement is the recognition that “learning today happens everywhere”—in both formal and informal settings—as the Mozilla Foundation points out on its Open Badges website. Proponents claim that badges offer a way to recognize and benchmark all of this learning.

By providing evidence that a student has attained certain skills, it is hoped, badges could unlock new career and learning opportunities. To date, talk...
of their potential has focused primarily on the former—namely, how badges will be accepted by employers. At the launch event for the MacArthur Foundation’s Badges for Lifelong Learning competition last year, for example, Secretary of Education Arne Duncan hailed badges as “a game-changing strategy,” particularly for veterans returning to civilian life with skills and accomplishments that do not appear on their résumés.

Individuals who want to issue a badge must be willing to sign up for a project that is still very much in its infancy.

But what’s truly revolutionary about badges isn’t their potential to help students find jobs—it’s still unclear how employers view the concept. Instead, the real game changer is the technology under the hood, and how it might facilitate a rethinking of credentialing by employers, educational institutions, and learners alike.

Laying out a technology framework for badges has been the goal of the Mozilla Foundation and its Open Badges Infrastructure (OBI). In line with the larger Mozilla mission, the work is open, both in terms of the transparency of the foundation’s process and the code itself. Mozilla doesn’t want to dictate what skills will count toward badges or decide who gets to issue them. Rather, it wants to define the underlying technology standard, says Sunny Lee, a product manager for OBI, “so we can pull badges out of a siloed environment and make them interoperable.”

Badge silos have already cropped up on a host of educational sites, ranging from Khan Academy to Codecademy, where users can earn badges for watching videos, completing exercises, and so on. As Lee points out, these digital badges—and the accomplishments they represent—cannot easily be transferred from site to site or pulled into one location where learners can showcase everything they’ve done.

The old-fashioned way of showcasing these accomplishments, of course, is the résumé. On a résumé, job seekers list the various schools they attended, their degrees, the jobs they’ve held, and other skills. But digital badges built with OBI are meant to offer more than a mere list of skills and accomplishments. Instead, they are embedded with metadata that makes them more “evidence-based,” says Lee. A digital badge can tell you who issued it, when it was earned, and the criteria for earning it—and it can link to all of the evidence.

Open Source Underpinnings

The infrastructure that Mozilla has designed is open source. The code is available on GitHub, which means developers outside Mozilla can download it, modify or “fork” it, and contribute their own code—and developers are already doing so. For example, EverFi, an education company that teaches critical skills to both K-12 and college students, has built a platform based on OBI called Sash. The Sash platform provides an interface for organizations to create and display digital badges. EverFi’s code, which (according to its website) is “written in Node.js for scalability and performance, [and] easily integrated into any platform via JSON rest API,” is also available on GitHub.

Talk of GitHub, JSON, and rest APIs makes the project sound as if it’s aimed only at software engineers. But OBI is meant to allow institutions, groups, and individuals to issue their own badges. Furthermore, its creators hope to serve the needs of nontechnical people as well. Currently, Mozilla is working on a project called Open Badger that is meant to be a lightweight mechanism for awarding badges—one that doesn’t require a lot of technical knowledge.

As it stands now, though, a fair amount of technical know-how is required to issue a badge. According to the OBI documentation, issuer requirements include a “web server capable of serving requests to the general internet…hosting ability…[and the] ability to make a POST request from their server backend and read a JSON response,” all of which will sound daunting to many. At this point, it seems, individuals who want to issue a badge must be willing to
CREDENTIA Ling

sign up for a project that is still very much in its infancy. But organizations, schools, and even individual educators are taking the leap. David Wiley, associate professor of instructional psychology and technology at Brigham Young University (UT), offered badges for several of his recent classes. On his blog, he details the steps he took to set the badges up. “I wanted to demonstrate that there is nothing stopping a single faculty member who wants to do something innovative from awarding badges in a DIY sort of way,” he wrote. Nothing except having the technical skills, of course.

Purdue University (IN) has attempted to remove the technical roadblocks for its instructors by building Passport, an OBI-compatible application that contains a number of templates to make creating and issuing badges easier. William Watson, assistant professor of learning design and technology, helped develop Passport, which he’s using in his EDCI 67200 Advanced Practices in Learning System Design class. Eight badges are available to the graduate students enrolled in his course, including “ID Case Analyst & Problem Solver,” “ID Case Facilitator,” and “Reflective ID Practitioner.”

“The eight badges are structured around the targeted learning competencies of the course,” says Watson, who believes badges are a way for instructors and students to focus on specific skills and competencies, rather than on the broadly articulated learning goals that readings, exams, and assignments often address.

Diplomas—even transcripts—don’t necessarily reveal whether a student has met broad learning goals, whereas a digital badge can point to evidence of exactly how the student met those goals. Interestingly, this lies at the root of some concerns about badges: that they will emphasize “skills” over other, less tangible accomplishments. There’s worry, too, that the badges will skew heavily toward technical skills, which isn’t altogether surprising given Mozilla’s involvement and its plans to create badges for skills such as HTML5 and CSS as part of its Webmaker program.

A Role for Liberal Arts?
So, how will highlighting these sorts of skills and accomplishments fit into a traditional credentialing environment? If the OBI project takes off, how will certain academic disciplines—particularly those associated with the liberal arts that have never formulated a catalog of specific, required skills—fit in?

A digital badge can tell you who issued it, when it was earned, and the criteria for earning it—and it can link to all of the evidence.

By name and design, OBI is meant to be open. This means that “soft” skills can certainly be recognized alongside more concrete ones: A badge for CSS skills can sit alongside a badge for collaborative teamwork, for example. Indeed, badges may turn out to be a lifeline for academic fields that are struggling for relevance in an increasingly technical world. By reframing what they teach in terms of job-related skills—be it critical thinking or advanced reasoning—traditional academic disciplines can potentially redeem their value in the eyes of students and employers.

Indeed, proponents are quick to point out that digital

VIDEO: Kyle Bowen, director of informatics at Purdue University (IN), talks about his university’s goals for digital badges and how they might contribute to student success.
badges are not meant to supplant formal education or traditional degrees. Rather, they can highlight the sorts of skills, knowledge, and accomplishments that neither diplomas nor résumés have been able to capture.

Despite the early promise of badges, it’s an ecosystem that’s still very much in its early stages. Mozilla has attempted to seed the ecosystem with high-quality badges, just as the Badges for Lifelong Learning competition tried to do, but the movement has a long way to go. Even so, there are

“I worry that students will focus on accumulating badges rather than making connections with the ideas and material associated with the badges.” —Mitch Resnick, MIT

some encouraging signs. The Passport system, which is the focus of a pilot project that started only this fall, is being used by 49 Purdue instructors, as well as 52 teachers at other institutions. To date, 175 badges have been created and 795 have been awarded. “The feedback has been excellent,” reports Kyle Bowen, director of informatics, who oversaw development of Passport. “Adoption has met our expectations.”

With a view to boosting badge adoption among students, Purdue also created a second app, Passport Profile, that lets students display the badges they’ve earned. Designed for tablets and available free in the iTunes Store, the app can be used to view not just badges earned at Purdue but any badge within the Mozilla Backpack, Mozilla’s display site for badges.

It’s too early to know whether students will take to the concept or not. “So far the only feedback I’ve received is from a student who said her initial response was minor annoyance at having to learn a new technology,” says Watson. But the student was soon updating her profile picture and planned to complete certain badge requirements “with distinction,” which requires extra effort in the course with no impact on the final grade. “She ultimately realized that she’s competitive, and she wants those badges!” concludes Watson.

Not all students will respond this way, of course. Indeed, the question of motivation has been one of the more controversial aspects of the entire badge initiative. MIT professor Mitch Resnick, for example, says he remains a “badge skeptic” precisely over this issue. He writes: “I worry that students will focus on accumulating badges rather than making connections with the ideas and material associated with the badges—the same way that students too often focus on grades in a class rather than the material in the class, or the points in an educational game rather than the ideas in the game.”

So, are badges the “game changer” that the secretary of education suggests? One thing is clear: For this new badge ecosystem to thrive, badge issuers and learners alike will need to invest the badges with real meaning. By engineering an open source infrastructure, Mozilla hopes that both the meaning and the code of digital badges can be developed in ways that are flexible—to the benefit of all sorts of learners and all sorts of learning. CT

Audrey Watters is a freelance writer who covers the intersection of teaching, learning, and technology.

The Cisco Unified Workspace
BYOD made easy
Social Medium Well Done

Social media offer a way for students to collaborate in a familiar environment, whether in a public forum, private network, or somewhere in between.

This is the second article in a six-part series on the elements of a collaborative classroom. For part one, “Classroom Furniture: The Mod Squad,” see our November issue.

FOR TECH-SAVVY educators looking to connect with students, social media have a powerful allure: Not only are sites such as Facebook and Twitter inherently designed for discussion and the exchange of ideas, but most students are already immersed in the technology. While these sites have their critics, social media’s potential for collaboration is hard to ignore. (For a breakdown of the issues, see “Pros and Cons of Social Media in the Classroom.”)

Instructional technology leaders across the country are experimenting with ways to use social media for collaboration in their courses, while at the same time giving students a chance to interact with a larger audience outside the classroom’s four walls. Their efforts generally fall into three categories: public social media, private networks, or a hybrid of the two.

Public Social Media

Gideon Burton describes the English Department at Brigham Young University (UT), where he teaches, as quite conservative in its pedagogical approach. And, at first glance, you might not think his specialties of Renaissance literature and the history of rhetoric lend themselves to the use of social media. But, after several years of classroom experimentation with Facebook, Google+, blogging software, and other tools, the professor wouldn’t want to teach any other way.

“I haven’t done quantitative analysis, but in three years the level of interest in semester-ending projects that use social media channels has increased dramatically,” Burton says. “There has been a palpable increase in engagement.”

Initially, Burton had students use a Facebook page to begin group discussions of classroom assignments. It worked well for a while, in part because students so often use Facebook. “They claimed that made it easier to go to our class page, although some complained that it led them to waste time on Facebook,” recalls Burton.

Also, unlike a discussion forum inside a learning management system, Facebook allowed students to see the faces of their fellow students—and many of them commented on how much that mattered to them.

Young University (UT), where he teaches, as quite conservative in its pedagogical approach. And, at first glance, you might not think his specialties of Renaissance literature and the history of rhetoric lend themselves to the use of social media. But, after several years of classroom experimentation with Facebook, Google+, blogging software, and other tools, the professor wouldn’t want to teach any other way.

“I haven’t done quantitative analysis, but in three years the level of interest in semester-ending projects that use social media channels has increased dramatically,” Burton says. “There has been a palpable increase in engagement.”

Initially, Burton had students use a Facebook page to begin group discussions of classroom assignments. It worked well for a while, in part because students so often use Facebook. “They claimed that made it easier to go to our class page, although some complained that it led them to waste time on Facebook,” recalls Burton.

Also, unlike a discussion forum inside a learning management system, Facebook allowed students to see the faces of their fellow students—and many of them commented on how much that mattered to them.

VIDEO: John DeAngelo, director of student academic affairs at the University of California, San Francisco, discusses the difference between undergraduate and graduate student interest in social media.

By having an ongoing online discussion among students, Burton believes that class time can be used more efficiently. “I know what students have already been conversing about,” he explains, “so we can take off from there.”

Despite all this, Burton eventually moved away from Face-
book. For starters, the company changed its group features and no longer supports discussion forums. Furthermore, students said they wanted to segregate their social life from their class life. Facebook didn’t feel academic enough to them, and they don’t want to “friend” their professor.

Nevertheless, Burton wouldn’t go back to a “walled” LMS discussion group. “I like [the discussions] to be public-facing,” he explains of his decision to move to Google+. “I have been so pleased with Google+. It is integrated with Gmail and Google’s Blogger tool. I have found it is a better way to conduct conversations more broadly, not just with others in the class.”

His students write longer-form essays in the Blogger platform and use Google+ to notify the class when they have posted a new item. “The real interaction takes place in Google+ rather than in the comment section of the blog,” Burton says.

In Burton’s class, students are also asked to do what he calls “social proofing” of their work. At each stage of their research and writing, they must demonstrate that their work is relevant to real audiences—largely by using social media to find and interact with interested parties. For example, one student posted a long comment on the blog of an expert. Her comment was substantial, and the expert responded by making her comment the basis of a later blog post. He also reciprocated by commenting on the student’s blog.

Since Burton introduced social media to class, students are far more interested in each other’s work than ever before. “There are former students I follow on social media,” says Burton. “They are still talking to each other and still referring to the work they did in this class. That is not going to happen without social networking.”

Burton notes that administrators at many universities are still trying to form social media usage standards. So far, he has not run afoul of any BYU policies.
WHILE SOCIAL MEDIA are commonly used to enhance collaboration in the classroom, there's another good reason for faculty and students to embrace the technology: Fluency in social media makes students more marketable in the workplace.

Last year, Todd Bacile (@toddbacile), an instructor of electronic marketing in the College of Business at Florida State University, developed a classroom assignment that challenges students to increase their own personal “Klout score.” (A Klout score is a single number that measures social media “influence,” based on aggregated data about a user’s social media activity.) We asked Bacile about the project.

CT: What sparked the idea to use Klout scores in a class assignment?

Bacile: A manager of a social media marketing agency told me his firm uses Klout during the job-application screening process. The very first thing he and his recruiters do is look at students’ Klout scores and their LinkedIn profiles. Any student who does not have a complete LinkedIn profile and a Klout score above 35 is removed from further consideration. This is when I decided I should teach students about social media influence metrics.

CT: Do the students’ Klout scores give an indication of their ability to effectively communicate using social media tools—or just how active they are on social media sites?

Bacile: Klout doesn’t merely look at how often or how much content is created—it looks at that to a degree. However, the algorithm attempts to determine the level of engagement and conversation a person generates. A person will have a lower score if a lot of content is created via social media yet nobody is responding to or sharing that content. In contrast, a person will have a higher score if he creates content that others like, reply to, and re-share to their own networks.

CT: Were the students open to being graded on this project?

Bacile: Yes. They were excited to learn about something that seemed so emergent and relevant in the real workforce. Also, this was only 10 percent of their overall course grade. But, just to be fair, I gave students the option to opt out of the project and write a paper instead. Only two students out of more than 100 have opted out, not because they dislike Klout or being graded on it, but due to their lack of interest in social media in general.

CT: What’s the best way to raise a Klout score?

Bacile: The key to improving influence in this context is to create content other people want to act upon. Having more followers, friends, and connections helps, but only if these people respond to content. A large following with little to no engagement will cause a Klout score to decrease (drastically, in some cases).

A few tips: Create interesting content that is unique and helpful; always try to respond to those who engage with you; be helpful and answer questions; ask questions of others; and try to identify opinion leaders within a topic area you would like to discuss, then engage with those leaders. It’s very important to follow commonly accepted etiquette on the different social media sites. Doing these things will improve one’s engagement and also grow a following of authentic people who are interested in the content being created.

CT: Were most students successful at raising their Klout scores? Did you get a sense they found the project worthwhile?

Bacile: The average Klout scores at the beginning of the project were in the range of 15 to 20. By the end, the average scores were in the range of 40 to 45. When these classes participated in this project, the average Klout score for all social media users was about 20. So an increase to 40 or higher was really exciting. Based on feedback, I believe the majority of the students really enjoyed the project because they were learning how to engage with others using strategies they may have not used before. Plus, they were gaining experience with a newer metric used in marketing and in the hiring process by some companies. One of my students specifically told me a recruiter asked him about his Klout score.

SPHERES OF INFLUENCE
that appeal to faculty. “I liked that Mixable was informal,” says Ellen Gundlach, who has experimented with Mixable in her courses in statistical literacy for liberal arts majors at Purdue. “It was somewhat like Facebook, so it was a format students were already comfortable with, yet a secure environment where I could force them to participate for course credit.”

Gundlach created an assignment that asks students to find five examples of statistical topics in mainstream media and to write blog posts in Mixable about the way statistics are used. Students are also required to make at least five comments on five peer posts throughout the semester.

“Once the students do the first post, they start to like it and see it is fun to get the discussion going,” he explains. “I also can look at the things they are discussing, see where misperceptions are, and go over those concepts in class. Then, if I put something similar on the final exam, I can see the improvement on those concepts.”

David Raths is a freelance writer based in Philadelphia.
This Month’s Hottest FREE Resources from Campus Technology

Just for you—free valuable information available from a trusted industry source. Check out the most-accessed webinars, white papers, and other top free sponsored online resources Campus Technology readers are viewing and using to help with institutional initiatives.

PREDICTIVE ANALYTICS

- Utilizing Predictive Analytics to Improve Student Outcomes
 On-demand Webinar

CAMPUS SAFETY

- Social Network Monitoring to Prevent Hazing, Bullying, Suicide
 White Paper

LEARNING MANAGEMENT SYSTEMS & PORTALS

- Herzing University and City College Explore Next Generation Portal
 On-demand Webinar

PRINT SECURITY

- Research Report: Print Security in Education
 White Paper

BYOD

- BYOD Best Practices from Other Industries You Can Apply on Campus
 White Paper

Looking for more resources? View our full range of webinars and white papers, or visit CampusTechnology.com now.
Blended learning has become a meme. While mixing online instruction with face-to-face time is not exactly new, momentum for hybrid learning has been building ever since a Department of Education meta-study in 2010 quietly announced that traditional education simply doesn’t stack up. In that study, online education was determined to be more effective than traditional classrooms—and blended learning topped the lot.

Today, colleges and universities nationwide are experimenting with a variety of recipes to find the custom blend that meets their specific needs. (To read more about this aspect of hybrid learning, see “Tuning the Blend,” on page 22). To be successful, though, schools must first take time to lay the groundwork. Here, CT looks at the four keystones needed to build a winning hybrid program.

Jean-Francois Podevin

4 Keys to a Better Hybrid

Blended learning can improve student performance and help schools meet strategic goals, but success depends on laying a solid foundation first. BY DIAN SCHAFFHAUSER
1) Know Why You Want to Blend
It’s tempting to believe that schools are gravitating toward hybrid learning simply because it’s more effective than traditional face-to-face learning, as the ED study suggests. While schools are obviously motivated by student performance, they are also being buffeted by strong demographic, economic, and business forces. And hybrid classes offer a potential solution to some of their problems.

For starters, blended learning gives schools a way to optimize the use of classroom space. Utilizing a blended model that shifts some in-class sessions online, schools can free up classroom space to accommodate more classes and more students. For example, the University of Central Florida, which is possibly the biggest institutional advocate for blended learning in the country, employs a strategy called “time-shifting” in its courses—holding instruction face-to-face on a limited schedule, with the rest handled online. According to Thomas Cavanaugh, assistant vice president for distributed learning, this approach helps to “maximize facility usage.”

Other institutions hope that hybrid programs can remedy underlying business challenges. Minot State University (ND), for example, wants to serve both online and face-to-face students, but it lacks the money and resources to run separate programs—it needs the same faculty for both.

A private seminary in Berkeley, CA, on the other hand, shifted to the blended model as a way to address the issue of dwindling enrollment. Brian Beatty, associate vice president for academic affairs operations and associate professor in the instructional technologies program at San Francisco State University (CA), provided consulting services to the seminary. “They said, ‘We like the classroom—we don’t want to give that up. But we have to have more students, and we have to provide more availability for them schedule-wise,’” he recalls, “I think for those who have a real need to do both at once, [blended learning] is something worth seriously considering.”

However, some academics worry about the use of blended learning simply as a business strategy. “The worst thing institutions can do with blended learning is to try to make money off it, thinking they can pile more students into a class or free up time for their faculty,” says Dylan Barth, a member of the English department and a learning technology consultant for the Learning Technology Center at the University of Wisconsin-Milwaukee. “Those are not the reasons to go into the blended business.”

He believes that blended programs offer a way for schools to compete against all of the other “online competition out there,” especially in drawing non-traditional students into the classroom. “Locally, we have a very good reputation,” he says. “UWM has great online classes and great online programs. There are still opportunities for those online programs to work and to grow. But I think we can really grab our local students and meet their needs and allow them the flexibility they need to succeed.”

2) Prepare Your Faculty
Identifying the reasons why blended learning makes sense for a school is a vital first step. But it’s just the beginning. According to Norma Scagnoli, director of eLearning in the College of Business at the University of Illinois, preparing faculty is probably the hardest part of implementing a blended learning model, especially if the instructors have taught a course for many years.

“They really know their topic and they know when their students are going to need them more,” she explains. “The disadvantage is that they trust themselves in the classroom so much that they don’t take the preparations as seriously as when the class is fully online.”

The biggest problem? It’s hard to break the faculty habit of filling up class time with lectures. Scagnoli is often asked by faculty, “If I have my lectures online, what do I do now?” When they are unprepared, they tend to repeat themselves,
covering the same content—including the same old jokes—in the videos that students watch before class.

It’s also a common faculty mistake to treat the face-to-face and online components as separate units. “Sometimes the instructor gives the online part to the [teaching assistant],” explains Scagnoli, which means “students think the online part isn’t as important as the face-to-face part.”

And if the instructor never mentions what happens online, students start to think of the components as different classes, even though they both use the same content. “That unity—the connection between having things online that connect to things that happen face-to-face—is really important if students are to see the class as one,” notes Scagnoli.

Avoiding the pitfalls of blended learning takes a lot of preparation—more than many faculty members expect. When advising instructors on the blended approach, the Learning Technology Center at UWM tries to be “upfront,” says Barth. “It takes a few months to redesign a course. It’s really important to get as much done before class starts.”

Although instructors at UWM are expected to convert their own course materials, the Learning Technology Center does offer a two-day workshop. “It’s a blended format with online activities between our face-to-face meetings,” explains Barth. “And we have follow-up consultations with instructors.”

At the College of Business at Illinois, the eLearning team takes a more hands-on approach in helping faculty make the shift to the blended model. (The college also pays instructors extra to spend their summers converting their courses.) “We always start by talking about the class before we talk about how technology can help,” explains Scagnoli. These conversations explore the goals for the class and how they’re currently achieved face-to-face.

Scagnoli’s team also sits in classes. “We observe instructors teaching so we understand what they value, how they move or work in the classroom,” she says. “We try to understand that instructor before we help him become an online instructor.”

Next, instructional designers go through the syllabus with the instructor and show how components of the traditional class might be handled online. “We have conversations until the instructor decides, ‘Okay, I think I could do this,’” explains Scagnoli. “The instructor really sits and works through his course.”

Scagnoli also has a group of faculty taking a free five-week online course with UCF. Through these training efforts, Scagnoli expects to have at least one more faculty member ready to offer a blended class in spring 2013 and another four ready for fall 2013.

Ultimately, say proponents of the blended model, success comes down to a willingness by the faculty to experiment and view the endeavor as a work in progress. In the course of doing that, says Scagnoli, each faculty member is forced to rethink his role: “Is he just a person who vomits information at the students, or is he an expert that the students can rely upon and ask questions of?” The instructor, she says, “becomes the guide.”

3) Set Student Expectations

Students need to be prepared for a blended format, too.

VIDEO: Kelvin Thompson, assistant director of the Center for Distributed Learning at UCF, discusses the school’s Blended Learning Toolkit resource.
Indeed, those who have never taken a blended course may go through an adjustment period. According to Barth, some students have trouble believing that the class with a Monday-Wednesday-Friday schedule really won’t be meeting that Friday. “Inevitably, a student will show up on Friday just to make sure,” he says.

“The worst thing institutions can do with blended learning is to try to make money off it.”
—Dylan Barth, University of Wisconsin-Milwaukee

The challenge for students, says Scagnoli, is to “learn how to manage their learning.” In general, upper-level students tend to be more focused and don’t need the instructor to tell them what needs to be done for class. For first- and second-year students, though, the “humanizing touch” of the blended approach can help them gain a sense of scheduling that’s sometimes missing in fully online courses.

She cites an instructor who used his in-person class time to cover student questions. Unfortunately, students were posting questions just before class began, which didn’t give the faculty member sufficient time to prepare.

So he imposed a deadline: Students had to post their contributions 24 hours before class. “Colleges have always told students that time management is a good skill to have,” notes Scagnoli, “but I think they will have to go back to it with a more modern view and talk about time management when you have an online class.”

Students also often experience difficulty with the technology used in blended courses. “We advise instructors to use the lowest-risk technology possible when coming up with assignments and having students do certain things,” says Barth, noting that many of the standard technology systems on campus, such as the learning management system, usually don’t pose a problem. “It’s an issue only when instructors use more high-risk technology, like a synchronous discussion tool.”

4) Configure Back-End Systems
Success is contingent on more than classroom technology, however. Hybrid courses can be hobbled when schools don’t have back-end administrative systems to support them, or the means to educate students about a blended option. San Francisco State, for example, had to create a new course form that asks students to specify whether they want to take a course in blended, traditional, or online modes.

For its part, UWM uses a three-tier system to classify its blended classes, because the amount of online work can vary tremendously from course to course: The university defines a blended course as a class in which anywhere from 20 to 99 percent of instruction is delivered online. By creating classifications within this broad range, the school can let students know “how much they’re expected to meet face-to-face, and how much they’re expected to do online,” Barth explains.

Many schools are also making concerted efforts to post the specific dates that blended classes meet in person. This enables students—many of whom have jobs and families—to consult their schedules and choose the courses that work for them.

Dian Schaffhauser is a senior contributing editor of Campus Technology.

Related Reading on CT
A Better Blend
The hybrid approach to learning has benefited both from the trials of early pioneers and the technological advances of recent years.

Best Practices in Lecture Capture
Tips from the University of California, San Francisco on how to make the most out of lecture capture on campus.
For hybrid courses, finding the right blend of online and face-to-face instruction can be achieved only through experimentation—and will differ from class to class.

“TUNING THE BLEND” is a phrase that educators hear a lot these days. No, it doesn’t refer to how the barista at the local coffeehouse mixes his arabica and robusta beans. It refers instead to finding the correct balance of online activities and face-to-face instruction in hybrid—or blended—courses. As with a skilled barista, though, there is definitely an element of art involved. (It also requires laying a solid foundation: Read “4 Keys to a Better Hybrid” on page 18.) Finding a mix that meets the needs of both faculty and students requires experimentation, experience, and constant tweaking. And, as with coffee, the same blend is not going to hit the spot for everyone. Schools must be prepared to tune the blend on a course-by-course basis.

Without doubt, faculty face a host of options in developing blended courses. For Dylan Barth, a member of the English department and a learning technology consultant for the Learning Technology Center at the University of Wisconsin-Milwaukee, deciding which activities and lectures to push online is a matter of determining which elements will turn out to be a “time-saver for the class.” These tend to include assignments, quizzes and exams, discussions that can be handled asynchronously, and, of course, recorded lectures. In general, Barth notes, the more complex the assignment, the more important it is to meet in person with students to go over the instructions. If most of these components sound like activities that your instructors are already putting online via the LMS, the faculty are probably primed to make the transition to a blended format. “If you’re already using a lot of digital materials in your teaching, like presentation files and handouts—and it’s not all paper-based—then you’ve already got a lot of that development done,” explains Brian Beatty, associate vice president for academic affairs operations and associate professor in the instructional technologies program at San Francisco State University (CA). All that’s missing, he adds, is the “online-interaction component.” For Beatty, the online-interaction portion of his courses includes spending 15-20 minutes three days a week in forums with his students. He continues to hold the same number of face-to-face classes, because that’s the format he prefers. When he’s traveling, though, those classes go online. For large lecture courses, he records sessions with Echo360, which...
are then reviewed by students asynchronously. In the graduate program, which has far fewer students in each session, he uses Blackboard Collaborate to hold synchronous collaboration sessions.

Generally, instructors will have to experiment to find that delicate balance of what should be done in person and what can be handled online. Last spring, for example, Barth ran a debate activity in class that generated a lot of energy among his students. This fall, he did the same activity online. “I think there was less excitement, because they weren’t all in the same room,” he recalls. “But the outcomes were better. The student responses were better.”

One Size Doesn’t Fit All
And just as individual instructors must tweak the balance of online-offline instruction, schools must also recognize that one size doesn’t fit all. The College of Business at the University of Illinois, for example, has three blended courses, each unique. A sizable undergraduate finance course uses a flipped-classroom format, in which students watch prerecorded lectures weekly and spend half as much time in class as under the old, traditional format. The in-class sessions are customized to focus on questions and comments posted by students during the week. Meanwhile, a marketing course at the school features only a few video lectures, and the amount of time spent face-to-face hasn’t changed at all. What makes this course stand out is the fact that students do readings and take related quizzes before attending class. During class, the instructor then revisits

The more complex the assignment, the more important it is to meet in person with students.

Join us on December 6, for Leading Technology Change on Campus: The Cloud, which focuses on ways higher education institutions can leverage cloud services securely and productively. The conference will feature panel sessions on implementation strategies, security issues, school culture and organizational impacts.

Register now for this free, 100% online summit to explore key areas of cloud implementations, along with a wide range of challenges facing IT executives on campuses, large and small.

Presenters Include:

Ronald L. Danielson
Vice Provost for Information Services and CIO
Santa Clara University
MODERATOR

Kenneth C. Green
Founding Director
The Campus Computing Project

FEATURED SESSION
“Opportunity in the Cloud: What Are We Waiting For?”
HYFLEX: PUTTING STUDENTS IN CONTROL

IT MAY SOUND like something performed by yoga experts, but “hyflex”—a combination of hybrid and flexible—is a form of blended learning that is receiving increasing scrutiny. Like blended classes, hyflex courses take place both in the classroom and online. Instead of the faculty member establishing what will happen face-to-face and online, though, the individual students get to decide.

A student might opt to attend all classes in person, all online, or a combination thereof. Brian Beatty, associate vice president for academic affairs operations and associate professor in the instructional technologies program at San Francisco State University (CA), is probably the best-known proponent of the hyflex model. “We wanted an approach that would serve both populations at the same time,” he says in reference to faculty and students. To explain the benefits of the model, Beatty cites the example of a student who lived 60 miles from campus and enlisted in the program as a distance-learning student. After a few weeks, though, he started attending class in person. “He realized he needed to establish a relationship with the other students as well as with the instructor,” recalls Beatty. When the student felt more comfortable, he went back to attending online. The hyflex model does put strains on traditional back-end systems, though. Because a student has the option of taking courses fully online, he could potentially enroll in two courses scheduled to meet at the same time. “Our registration systems aren’t set up to allow a person to register for classes with that kind of time conflict,” explains Beatty. “It would typically take some sort of override in the system to allow that to happen.” Also, the model creates some facilities headaches. For example, SFSU found that it had to restrict the number of people who showed up to take exams. “We couldn’t schedule an exam and say, ‘Okay, all thousand students can now come to class,’” says Beatty. “The lecture hall only seats 200. Now when they register for a class like that, we allow a certain number to show up for tests. The rest are online tests. They’re not allowed to come into the classroom for their test.”

those topics that need more attention based on the quiz results as well as questions posed online by students.

The third course took an entirely different tack. To accommodate the instructor’s travel schedule, the class met in person for three weeks, went entirely online for eight weeks, and then resumed the face-to-face format for the remaining four weeks. While the instructor was out of the country, she met synchronously with her students via Blackboard Collaborate to review the previous week’s work and prepare them for the coming week.

If faculty are using videos or captured lectures as part of the blended program, it will definitely take some experimentation to get the mix right. The early video efforts at the College of Business, for example, evolved from whole lectures delivered by the instructor and recorded by a videographer in a production studio into 10- to 12-minute chunks recorded by the instructor using TechSmith’s Camtasia. The purpose of these video chunks varies. Some are shown in an online forum where students are invited to ask questions, just as if they were in a lecture hall. Other clips make their way into quizzes: Students watch the videos and then respond to a set of multiple-choice questions. Still others are available as supplemental learning materials.

Dian Schaffhauser is a senior contributing editor of Campus Technology.
Not a Subscriber to Campus Technology Magazine?

Don’t wait for colleagues to share an article with you. Get your own FREE subscription to this dynamic, revolutionary higher education technology publication now.

SUBSCRIBE NOW.

Other Campus Technology Resources
You Might Like:
- Online Articles and News
- Campus Technology 2013
- Campus Technology Forum
- Microsites
- 11 Newsletters
- Campus Technology Virtual Leadership Summit
- Learning Environments 2013
- White Papers
- Campus Technology Executive Summit
- Webinars

For details, visit: www.campustechnology.com

83% indicate the magazine helps improve job performance
Data from Campus Technology 2011 Reader Survey

Subscribe Now—It’s Free
Clickers by Choice

This fall, Iowa Central Community College implemented Turning Technologies’ student-response system campuswide. The initiative originated with the faculty, and the college has kept faculty choice as the key factor in the deployment and use of the clickers in any course or program. Read the full story online.

Dissertation Collaboration

Liberty University (VA) is using Microsoft SharePoint to manage the dissertation process for students, advisers, and doctoral committee participants. Key features for the institution include the ability to set access permissions, file sharing through a document library, e-mail alerts, and integration with Microsoft Office. Read the full story online.

SHARE YOUR STORY! We’re looking for short videos about campus tech deployments. E-mail a synopsis to editors@campustechnology.com for consideration.

Live News from CT Online

AV & Presentation
- Smart Unveils Interactive Touch Projector
- Cisco Unveils WebEx Social Tools for Higher Ed
- NEC Debuts Mobile Projector with Wireless iPad Support

Business & Administration
- Elucian Unveils Extensible Ecosystem Architecture
- Brother Intros Scan-to-Cloud Desktop Scanner
- Westminster College Boast Recruitment with 2-way SMS Tool

Enterprise Systems
- Zerto.net Launches Cloud Backup for Colleges and Universities
- Solaris 11.1 Enhances Cloud Infrastructure, Adds 360 Features
- RightAnswers Revs Unified Knowledge Platform

Infrastructure & Facilities
- NetApp Launches Midrange Data Storage and Management Platforms

Mobile Computing
- MUGC Lists Ubuntu Offers iPad App
- Mobile Campus 2.0 Puts LMS, SIS Data in Students’ Hands
- Elucian Unveils Mobile Platform for Colleges and Universities

Retention, Recruitment & Marketing
- Higher One Adds Campus Intelligence to Campus Labs Suite
- Instructure Adds Enrollment Intelligence to Schools App
- Unicon Adds Support for Jasiq Student Success Plan

Security
- CoSoSys Rolls Out Mobile Device Management for iOS and Android
- Canon USA Introduces Full HD IP Security Cameras
- OpenDNS Enterprise Insights Supports Microsoft Active Directory

Teaching & Learning
- Altius Education Launches First Beta Course for Helix
- CourseSmart Analytics Measures Student Engagement with Digital Materials
- Mediatek EX 6.1 Gains User-Generated Content Module, MP4 Support
COLLEGE/UNIVERSITY INDEX

Athabasca University (Canada) ... 7
Brigham Young University (UT) .. 7, 11, 13-14
Brown University (RI) ... 2
City College (FL) ... 5
Emory-Riddle Aeronautical University (various locations) 3
Florida State University .. 15
Grand Canyon University (AZ) 5
Harvard University (MA) ... 2
Herzing University (various locations) 5
Iowa Central Community College 26
Kent State University (OH) .. 5
Liberty University (VA) .. 26
Minot State University (ND) .. 19
MIT .. 7
Ohio University .. 2
Princeton University (NJ) ... 2
Purdue University (IN) ... 11-12, 16
San Francisco State University (CA) 19, 21-22, 24

COMPANY INDEX

Aruba Networks ... 4
Blackboard ... 23-24
Campus Management ... 5
Cisco ... 26
Codecademy ... 10
Courseload .. 4
Coursera ... 2, 6-7
CourseSmart ... 4
Data Warehousing Institute, The 5
Dropbox ... 16
Echo360 ... 22
Elucian .. 26
Elsevier ... 4
EverFi ... 13-14, 16
Evertone ... 5
Facebook ... 13-14, 16
GitHub ... 10
Google ... 13-14
Hobson ... 26
Instructure .. 26
International Data Corp. .. 5

Stanford University (CA) .. 2, 6
University of California, San Francisco 13, 21
University of Central Florida 19-20
University of Illinois .. 19-20, 23
University of Manitoba (Canada) 2
University of Maryland .. 2
University of Minnesota ... 4
University of North Carolina 16
University of Pennsylvania ... 2
University of South Florida ... 5
University of Wisconsin-Milwaukee 19-22

Western Governors University Texas

ADVERTISER INDEX

Campus Technology Online Resources 17
Campus Technology Subscription 25
Campus Technology Subscription Platform 25
Campus Technology Virtual Leadership Summit 23
CampusTechnology.com/leadsummit
Cisco ... 12
cisco.com/go/usededucation
Fisher International ... 14
fisherinternational.com
Hitachi America ... 9
hitachi-america.us/projects

Jenabar .. 26
Klout .. 26
LinkedIn ... 15
LiveScribe .. 5
Moodle ... 26
MiCloud .. 5
McGraw-Hill Education .. 4
Microsoft ... 26
Moodle Labs .. 26
NEC ... 26
NetApp ... 26
Netop ... 26
Oracle ... 4
Sonic Foundry .. 26
TeamDynamix .. 5
TechSmith ... 24
Turning Technologies .. 26
Twitter ... 13, 16
Udacity ... 6-7

REACHING THE STAFF

Staff may be reached via e-mail, telephone, fax, or mail. A list of editors and contact information is also available online at campustechnology.com/pages/contact-us.aspx.

E-MAIL: To email any member of the staff, please use the following form: FirstInitialLastName@1105media.com.

CORPORATE OFFICE

Campus Technology (ISSN 1553-7544) is published monthly by 1105 Media, Inc., 2901 Oakdale Avenue, Ste. 101, Chatsworth, CA 91311. Complimentary subscriptions are sent to qualifying subscribers. Subscription inquiries, print back issue requests, and address changes: Mail to: Campus Technology, P.O. Box 2166, Skokie, IL 60076-7866; e-mail CMAcampus1105service.com or call 866-293-3194 for US & Canada, 847-763-9560 for International; fax 847-763-9564.

As a subscriber of an 1105 Media, Inc. Education Group publication, you’ll periodically receive information about related products and services. To view our privacy policy for more information, visit: 1105media.com/privacy.html. ©Copyright 2012 by 1105 Media, Inc. All rights reserved. Electronic sharing of individual pages or single issues of an edition by subscribers is permitted on a limited basis, institutions that wish provide institution-wide access to academic users for research purposes only must e-mail ink@1105media.com. For all other uses, submit your request at 1105reprints.com.

The information in this magazine has not undergone any formal testing by 1105 Media, Inc., and is distributed without any warranty expressed or implied. Implementation or use of any information contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy, there is no guarantee that the same or similar results may be achieved in all environments. Technical inaccuracies may result from printing errors and/or new developments in the industry.